

"La semplicità è la sofisticatezza finale"

Agenda

• A quick look at the role of empirical generalisation and replication

- Innovative prescribers
 - Who are they

- A relationship between two or more variables which is observable across a range of conditions
 - Boyle's Law describes the relationship between pressure and volume of a gas
 - Moore's Law predicts that the number of transistors on an integrated circuit doubles every 2 years
 - Lots in science few in social science
 - Benford's Law to predict tax evaders
 - Durkheim and the lower suicide rates of catholics compared to protestants
 - Height and weight of children

Replication

- Crucial to development of knowledge
- Arts vs Craft vs Science
- Predictability of results under different conditions leads to generalisability
 - Boyle vs cold fusion

- Eveleth and Tanner Database
 - 200 data sets
 - 40 countries
 - 20 years
- h = 53 ln w 53 +/- 2
 - boys and girls up to 13
 - girls 14+
 - Indo-Euro vs Afro-Asian boys only

The Dirichlet

Purchase Incidence Assumptions

- Steady as-if-random buying probabilities ('Poisson').
- Smooth distribution of light, medium and heavy buyers ('Gamma').

Brand Choice Assumptions

- A portfolio with steady probabilities ('Multinomial').
- Individuals' buying probabilities follow smooth distributions ('Beta').

Brand choice is independent of purchase incidence

Marketing Illustration

- Double Jeopardy predicted by Dirichlet
 - Slight Extension
 - Toothpaste and Coffee in US
 - Extension over time and place
 - Toothpaste in UK, US, Japan, 1967-90
 - Radical Extensions
 - Durables, Industrial Contracting, Store Patronage, Attitudes, <u>Doctors' Prescribing</u>, Foreign Exchange Purchases, <u>Collaborative Purchasing</u>, <u>Blood Donation</u>, <u>Charitable Giving</u>.

Coffee in the USA

	Market	% buying		Av. purchase	
	Share			frequency	
		0	D	0	D
Maxwell House	19	24	22	3.6	3.9
Tasters Choice	14	22	21	2.8	2.9
Nescafé	8	13	13	2.9	2.8
Maxim	3	6	6	2.6	2.6

Are Sole Buyers Valuable Buyers?

	Average		Sole buyers		
	frequency		Average		
	of buying		frequency		
	brand				
	0	D	0	D	
Robinson's	1.8	1.8	1.7	1.6	
Quosh	1.8	1.8	1.9	1.6	
Kia-Ora	1.6	1.8	1.4	1.5	
R. Barley	1.6	1.7	1.5	1.5	

- Sole buyers normally buy a brand at the same or slightly lower rate than an average 'multi-brand' buyer.
- Sole buyers are not valuable marketing targets

A radical differentiated replication

Prozac	Market	Penetra	tion Av	verage
In 12 weeks	Share	(%)	Pres	cription
	(%)	22 - 44479	Fre	quency
		0	Т О	Т
1997	21	67 6	6 3.8	3.8
1996	19	66 6	4 3.6	3.7
1995	17	62 5	8 3.3	3.5
1994	16	59 5	4 3.0	3.2
1993	15	50 4	7 2.9	3.1
1992	11	40 3	8 2.7	2.9
1991	8	30 2	7 2.4	2.6
1990	5	18 1	8 2.5	5 2.5
1989	1	6	4 1.8	3 2.4

Marketing Letters, Journal of Brand Management

Innovator Behavior (Some of) What we Know

- Coleman Katz and Menzel (1957)!!
 - 1 new drug which high socially integrated doctors prescribed 3-4 months earlier than low SI doctors.
- Van den Bulte and Lilien (2001), Manchanda et al (2008), Liu and Gupta (2012) Iyengar et al (2011, 2015) have all utilised social integration in studies of pharmaceutical innovation

Clever, sophisticated and complex

1. The full conditional distribution for β_i is given as

 $p(\beta_{i} | \beta_{0}, \gamma, V_{\beta}, y_{it}, x_{it}) \propto l(\beta_{i}) * \exp((\beta_{i} - \beta_{0}) * V_{\beta}^{-1} * (\beta_{i} - \beta_{0})'),$ where $l(\beta_{i}) = \Pr_{iT} \prod_{t=1}^{T-1} (1 - \Pr_{it}).$ $\min\left\{\frac{p(\beta_{i}^{c} | \bar{\beta}, V_{\beta}, y_{it}, x_{it})}{p(\beta_{i}^{(n-1)} | \bar{\beta}, V_{\beta}, y_{it}, x_{it})}, 1\right\},$

There are three other similarly complex functions in the model

Simple approach

(Some of) What we Know

- Taylor 1977!
 - 11 f.m.c.g. (grocery) categories across a year
 - Compared early and late adopters of new brands
 - Simple relationship between product class usage and innovative behaviour

<u>Data</u>

- Continuous buyers over the 52 weeks before and the year of launch
- a) Statins
- b) ARBs
- c) Cox-2
- d) SSRIs
- e) ED
- f) Osteoporosis

Our Approach

- In this research we adopt a simple approach
 - Measure mean rate of prescribing (any drug in the category) 12 month before launch
 - <u>Compare the mean rate for innovators and</u> <u>non innovators</u>
- Heavy prescribers of each category in the year before a product launch are more likely to prescribe the new drug in its first year on the market than are light prescribers.

<u>Results</u>

Prescribing Ratios

	Brand	Ratio of R(i)/R(n i)	n	i	One tailed Mann- Whitney p- value	One tailed Kolmogorov- Smirnov p- value
	Zocor	<u>'</u>	115	35		
	20001	2.0	115	55	0.00	0.02
	Lescol	2.0	170	19	0.00	0.01
Statins	Crestor	1.8	304	157	0.00	0.00
	Lipostat	1.7	145	35	0.01	0.07
	Lipitor	1.7	269	152	0.00	0.00
	Lipobay	1.6	269	73	0.01	0.02

For the Statin Category

<u>Results</u>

Variations in R(i)/R(ni) by Category and Time Period*

	3-Month	6-month	9-month	12-month
Statins	2.00	1.91	1.92	1.84
E. Dysfunction	1.22	1.44	1.32	1.44
Depression	1.44	1.41	1.46	1.42
Cox-2 Inhibitors	1.25	1.22	1.37	1.40
Angiotensin RB	1.42	1.40	1.36	1.37
Osteoporosis	1.55	1.45	1.35	1.34
All	1.47	1.46	1.46	1.46

*Geometric Means

<u>Results</u>

Cox Proportional Hazard Model Results

				Two	
				tailed p-	Two tailed
	Mean		One tailed	value	p- value
	Prior Rx		p-value	change	interaction
Drug	Rate	Exp(B)	Exp(B)	in -2LL	with time
Zocor	3	1.119	0.00	0.00	0.91
Lescol	5	1.111	0.00	0.00	0.67
Crestor	18	1.025	0.00	0.00	0.83
Lipostat	4	1.041	0.00	0.04	0.38
Lipitor	8	1.030	0.00	0.00	0.74
Lipobay	8	1.044	0.00	0.00	0.05

Results

Prescribing Ratios

				One tailed	One tailed
				Mann-	Kolmogorov
	Ratio of			Whitney p-	-Smirnov p-
	R(i)/R(ni)	n	i	value	value
Mean	1.46*	244	64	0.04	0.09

* Geometric Mean

For all 36 drugs

All 36 drugs

<u>Results</u>

Cox Proportional Hazard Model Results

Drug	Mean Prior Rx Rate	Exp(B)	One tailed p-value Exp(B)	Two tailed p-value change in -2LL	Two tailed p- value interaction with time
Mean	19.6	1.045*	0.05	0.10	0.55
* Geometric Mean					

<u>Conclusions</u>

- We find confirmation for CK&M and Taylor – heavy buyers are more likely to innovate than lighter buyers.
- We extend previous work in terms of quantifying the difference between W(i) and W.
- Implications for innovation research: look at rate of buying!

- CK&M still holds 60 years on
- We extend number of drugs examined from 4 to 40
 - Pharmaceuticals in a different country and radically different situation
- Taylor holds in radically different setting

simplicity is the ultimate sophistication

"The height of sophistication is simplicity"

Clare Booth Luce -1931

